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Regression problem

1 The goal is to make (real valued) predictions given
features

1 Example: predicting house price from 3 attributes

Age (year) Region
100 2 5 500
80 25 3 250

Sharif University
of Technology

Linear Regression




Learning problem

Selecting a hypothesis space

Hypothesis space: a set of mappings from feature vector to target

» Learning (estimation): optimization of a cost function

Based on the training set D = {(x(i), y(i))}?zl and a cost function we find
(an estimate) f € F of the target function

» Evaluation: we measure how well f generalizes to unseen
examples
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Learning problem

Selecting a hypothesis space

Hypothesis space: a set of mappings from feature vector to
target
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Hypothesis space

1 Specify the class of functions (e.g., linear)

1 We begin by the class of linear functions

easy to extend to generalized linear and so cover more
complex regression functions
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Linear regression: hypothesis space

Univariate y

f:R>R f(x;w) = wg+ wyix

||||||||||

» Multivariate

f:RT> R f(x;w) =wy +wixg+...wixg

w = [wg,Wy,...,wy]! are parameters we need to set.
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Learning problem

» Learning (estimation): optimization of a cost function

Based on the training set D = {(x(i), y(i))};l X and a cost function we find
(an estimate) f € F of the target function
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Learning algorithm

1 Select how to measure the error (i.e. prediction loss)

1 Find the minimum of the resulting error or cost function
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Learning algorithm

Training Set D
¢ We need to
— (1) measure how well f(x;w)
{ Learning J approximates the target
Algorithm (2) choose w to minimize the error
measure
Wo, W1

Size of f(x) Estimated
house = f(x;w) price

X
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How to measure the error
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. , 2
Squared error: (y(‘) - f (x(‘) ; w))
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Linear regression: univariate example

500
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Cost function:
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Regression: squared loss

In the SSE cost function, we used squared error as the
prediction loss:

Loss(y,9) = (y = 9)? Y =)

» Cost function (based on the training set):

J(w) = zn 1Loss (y(i),f(x(i); w))

i=

_ Z" (y® - f(xa);w))z

i=1

» Minimizing sum (or mean) of squared errors is a common
approach in curve fitting, neural network, etc.
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Sum of Squares Error (SSE) cost function

n . »
Jw =) (- fx®w)’
i=1
» J(w):sum of the squares of the prediction errors on the training set

» We want to find the best regression function f (x(i) ; w)
equivalently, the best w

» Minimize J(w)

Find optimal f(x) = f(x; W) where W = argmin J (w)
w
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Cost function: univariate example

J(w)
500 » X X anction of the parameters Wq,Wq)
400 %
X X X X X

($) Price 300 SeS¢ >e( 3(\)( X X
, , R
in 1000’s x>5><< >><§(X x)?é

200 —

X
100
0 v ' ' ' : .
0 500 1000 1500 2000 2500 3000
) . 2 -20 -20 On
Size in feet W,
(%) Wo

This example has been adapted from: Prof. Andrew Ng’s slides, Coursera
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Cost function: univariate example

f O wo,wi) = wp + wyx J(Wo, wy)
(for fixed wy, wy, this is a function of x) (function of the parameters wy, w;)
700 . ‘ . oy 0.5¢
- 0.4
0.3
= 500} I
é 0.2
S 400 0.1t
= 400 ) )
g ]
s M O
& 300f
E X e 0% 0.1f
A 2000 < 0.2
0.3}
1007 « Training data I
— Current hypothesis -0.47
0 ' ‘ ' ‘ .
1000 2000 5000 4000 %00 -500 500 1000 1500 2000
Size (feet”)
Wo

This example has been adapted from: Prof. Andrew Ng’s slides, Coursera
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Cost function: univariate example

f(x;wo,wy) = wp + wyx J(wo, wyq)

(function of the parameters wy, w;)

700 . ‘ . ‘ 0.51
0.4
600} Xy . :
s 3 0.3
2 500r g Tk il 0.2
S X
= 400} X ] I 0.1
& % M o
& 300 gy X ijxxx % .
'g ><>§< >><<><>< X><>><< -O]_ r
& 2001 e ¥ % ] -0.2
-0.371
100y « Training data
— Current hypothesis -0.47
_0.5 Il Il L It I
1000 2000 2000 4000 1000 500 0 500 1000 1500 2000
Size (feet”)
Wo
This example has been adapted from: Prof. Andrew Ng’s slides, Coursera
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Cost function: univariate example

](WO! Wl)

(function of the parameters wy, w;)

[ wo,wy) = wy + wyx

700 ' , . ‘ 0.5
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This example has been adapted from: Prof. Andrew Ng’s slides, Coursera
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Cost function: univariate example

fx;wo,wy) =wo +wyx

% Training data
— Current hypothesis

1000 2000 3000 4000
Size (feetz)

0.4
0.5

J(wo, wy)

(function of the parameters wy, wy)

This example has been adapted from: Prof. Andrew Ng’s slides, Coursera
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Cost function optimization: univariate

](W) — Zi_l(y(i) — Wy — W1X(i))2

» Necessary conditions for the “optimal” parameter values:

aj(w)
BWO =0
aj(w)
aW1 =0
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Optimality conditions: univariate

|:| n . N 2
](W) = Z 1(y(l) — Wy — W1X(l))
i=

aJ (w) n . . |
ow, Z.j(y © —wp —wyxW)(—x ) =0

l

] (w) n . ;
W = 2_=12(y(‘) —wo —wx®)(=1) =0

l

» A systems of 2 linear equations
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Cost function: multivariate

¥ We have to minimize the empirical squared loss:
n : : 2
Jw) =) (YO - fFxO;w))
i=1
f;w) =wy +wixg +...wixy

W = [Wo,Wl,...,Wd]T

W = argmin J (w)
WERd+1
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Cost function and optimal linear model

I”

» Necessary conditions for the “optima

Wwiw) =0
» A system of linear equations with d + 1 variables

parameter values:
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Cost function: matrix notation

— " (i) _ (i). 2
ok D O = Ow)
_ (1) _ wT +())?

zi=1(y wlxW)
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Cost function: matrix notation
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Cost function: matrix notation

i N 00— Do = S (o) T (D)2
Jw=) OV =faOmw) =) (0 -wx0)

- 1 -
2) ... (@
X = :’1 x]. . xd w = M:,1 y = :
. : : W y(n)
1 xgn) xén)_ -rd

Jw) = lly — Xwli3
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Minimizing cost function

Optimal linear weight vector (for SSE cost function):

Jw) = |ly — Xw||3

V(W) = =2X" (y — Xw)
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Minimizing cost function

Optimal linear weight vector (for SSE cost function):

Jw) = lly — Xwll3
J(w)=yly — 2y' Xw + w!XTXw
0. 2X'xXw —2XTy

VwJ(w) = —2XT(y — Xw)
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Minimizing cost function

Optimal linear weight vector (for SSE cost function):

Jw) = |ly — Xwl|3

V] W) = =2X" (y — Xw)

V,J(w)=0=X"Xw=X"y
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Minimizing cost function

Optimal linear weight vector (for SSE cost function):

Jw) = ly — Xwl|3

V] W) = =2X" (y — Xw)

VJw)=0=>X"Xw=X"y
w=(XTX)"1XTy
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Minimizing cost function

w=XTX)"1XTy
w=XTy
Xt =XTx)"1xT

XT is pseudo inverse of X

Linear Regression
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Another approach for optimizing the sum

squared error

b Iterative approach for solving the following optimization
problem:

Jw) = Z (y® = FxD;w))”

=1
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[terative optimization of cost function

Cost function: J(w)

» Optimization problem: W = argmin J(w)
w

» Steps:
Start from w°
Repeat
Update wt to wt*! in order to reduce J
t—t+1

» until we hopefully end up at a minimum
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Review:

Gradient descent

% First-order optimization algorithm to find w* = argmin J (w)
w

Also known as "steepest descent”

» In each step, takes steps proportional to the negative of the gradient vector
of the function at the current point wt:

Wt+1 — wt — v V](Wt)
J(w) decreases fastest if one goes from w' in the direction of —Vj(w?)

Assumption: J (w) is defined and differentiable in a neighborhood of a point w'

Gradient ascent takes steps proportional to (the positive of) the gradient to find a local
maximum of the function
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Review:

Gradient descent

]
» Minimize J(w)

l Step size
(Learning rate parameter)
wttl = wt — an](Wt)

0] (w)

awl

aJ (W)

_aWd_

V] (W) =

» If n is small enough, then J(wtt1) < J(wh).

» 1 can be allowed to change at every iteration as 7;.
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Review:

Gradient descent disadvantages

]
» Local minima problem

» However, when | is convex, all local minima are also global
minima = gradient descent can converge to the global

solution.
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Review: Problem of gradient descent with

non-convex cost functions
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This example hasgbeen adapted from: Prof. Andrew Ng’s slides, Coursera
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Review: Problem of gradient descent with
non-convex cost functions
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This example ha¥ been adapted from: Prof. Andrew Ng’s slides, Coursera
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Gradient descent for SSE cost function

¥ Minimize J(w)
wt+1 = wt — an](Wt)

» J(w):Sum of squares error

J(w) = Zn (y® - F(x®; W))Z

1=

» Weight update rule for f(x; w) = wlx:

n
witl = wt 47 Z (y® — w2 ) £0
=1

Sharif University

Linear Regression of Technology




Gradient descent for SSE cost function

) Weight update rule: f (x; w) = wlx

Batch mode: each step
considers all training data

» n:too small - gradient descent can be slow.

» 1:too large - gradient descent can overshoot the minimum. It
may fail to converge, or even diverge.
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Stochastic gradient descent

Batch techniques process the entire training set in one
iteration
thus they can be computationally costly for large data sets.

» Stochastic gradient descent: when the cost function can

comprise a sum over data points:
n

J(w) = =11<i> (w)

i
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Stochastic gradient descent

Batch techniques process the entire training set in one
iteration
thus they can be computationally costly for large data sets.

» Stochastic gradient descent: when the cost function can
comprise a sum over data points:

n .
Jwy=)  JOw)
i=1
» Update after presentation of (x®, y®):
witl = wt — an](l)(w)

Linear Regression
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Stochastic gradient descent

¥ Example: Linear regression with SSE cost function
JOW) = (y® — wix®)

witl = yt — an](l) (W)

wttl = wt + 77(y(i) — wa(i))x(i)
Least Mean Squares (LMYS)
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Stochastic gradient descent: online learning

1 Sequential learning is also appropriate for real-time
applications
data observations are arriving in a continuous stream

and predictions must be made before seeing all of the data

1 The value of n needs to be chosen with care to ensure that
the algorithm converges
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Evaluation and generalization

]

» Why minimizing the cost function (based on only training data) while we
are interested in the performance on new examples?

" ) £y
min Z Loss (y(l), f(x : B)) ——— Empirical loss
6 i=1

» Evaluation: After training, we need to measure how well the learned
prediction function can predicts the target for unseen examples
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Training and test performance

» Assumption: training and test examples are drawn independently at random
from the same but unknown distribution.

Each training/test example (x,y) is a sample from joint probability distribution
P(x,y),i.e.(x,y)~P

Empirical (training) loss = %Z’i‘ﬂ Loss (y(i), f (x(i) ; 0))

Expected (test) loss =E, ,, {Loss(y, f(x; 0))}

» We minimize empirical loss (on the training data) and expect to also find an
acceptable expected loss

Empirical loss as a proxy for the performance over the whole distribution.
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Linear regression: number of training data
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Linear regression: generalization

1 By increasing the number of training examples, will solution be

better!?

0 Why the mean squared error does not decrease more after

reaching a level?

0.9
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0.6 H
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0.5H

)

osl M

0.2
0

20 10 0 0 00 120 10 160 180 200
Num of Training Data
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Linear regression: types of errors

Structural error: the error introduced by the limited function
class (infinite training data):

w* = argminE, , [(y — w'x)?]
w

2
Structural error: E, ,, [(y - w*Tx) ]

where w* = (wg,:-,w;) are the optimal linear regression
parameters (infinite training data or whole distribution)
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Linear regression: types of errors

¥ Approximation error measures how close we can get to the optimal linear
predictions with limited training data:

w* = argmin E, ,[(y — w'x)?]
w
n
W= argminZ(y(i) - wa(i))z
Y=

Approximation error: E, [(W*Tx - WTx)Zl

Where w includes the parameter estimates based on a small training set
(so themselves are random variables).

Linear Regression
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Linear regression: error decomposition

¥ The expected error can decompose into the sum of structural
and approximation errors

Exyly = BT)%] = Eyy [(v — wT2)°| + Ex | (w2 - #7x)|
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Linear regression: error decomposition

The expected error can decompose into the sum of structural
and approximation errors

Exyl(y —WTx)?] = E,,, [(y — w*Tx)zl + E, [(W*Tx — WTx)zl

» Derivation

Eyylly — wix)?] = Exy [(y —wTx + wlx — WTx)Z]
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Linear regression: error decomposition

The expected error can decompose into the sum of structural
and approximation errors

Exyl(y —W'x)?] = Ey, [(y - w*Tx)Zl +E, [(W*Tx - WTx)Zl

» Derivation
Exyl(y — W'x)?] = E,,, [(y —wTlx+wlx - v’DTx)zl
2 2
= Eyy [(y —w'x) ] + E, [(W*Tx —wTx) ]
+ 2Ex, [(y —wx)(wx —#Tx)]
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Linear regression: error decomposition

The expected error can decompose into the sum of structural
and approximation errors

Exyl(y —W'x)?] = Ey, [(y - w*Tx)zl +E, [(W*Tx - WTx)zl

» Derivation
Exyl = DT2)2] = Eyy [(v — wTx + wx — #7x)°]
2 2
=Ey, [(y —w'x) ] +E, [(W*Tx —wTx) ]
+ 0

Note: Optimality condition for w* give us Ex,y[(y - w*Tx)x] =0
since VyEy, [y — W x)?]|y. = 0
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